Entropy Generation through Deterministic Spiral Structures in a Corner Boundary-Layer Flow

نویسنده

  • LaVar King Isaacson
چکیده

It is shown that nonlinear interactions between boundary layers on adjacent corner surfaces produce deterministic stream wise spiral structures. The synchronization properties of nonlinear spectral velocity equations of Lorenz form yield clearly defined deterministic spiral structures at several downstream stations. The computational procedure includes Burg’s method to obtain power spectral densities, yielding the available kinetic energy dissipation rates within the spiral structures. The singular value decomposition method is applied to the nonlinear time series solutions yielding empirical entropies, from which empirical entropic indices are then extracted. The intermittency exponents obtained from the entropic indices allow the computation of the entropy generation through the spiral structures to the final dissipation of the fluctuating kinetic energy into background thermal energy, resulting in an increase in the entropy. The entropy generation rates through the spiral structures are compared with the entropy generation rates within an empirical turbulent boundary layer at several stream wise stations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy Generation through Deterministic Spiral Structures in Corner Flows with Sidewall Surface Mass Injection

Results are presented for an innovative computational procedure that predicts time-dependent instabilities and deterministic ordered structures in three-dimensional steady-state laminar boundary-layer flows. The flow configuration considered is a corner flow with sidewall surface mass injection into a horizontal boundary-layer flow. The equations for the velocity fluctuations are cast into a sp...

متن کامل

Entropy Generation through Non-Equilibrium Ordered Structures in Corner Flows with Sidewall Mass Injection

Abstract: Additional entropy generation rates through non-equilibrium ordered structures are predicted for corner flows with sidewall mass injection. Well-defined non-equilibrium ordered structures are predicted at a normalized vertical station of approximately eighteen percent of the boundary-layer thickness. These structures are in addition to the ordered structures previously reported at app...

متن کامل

Entropy generation in hydromagnetic and thermal boundary layer flow due to radial stretching sheet with Newtonian heating

The entropy generation during hydromagnetic boundary layer flow of a viscous incompressible electrically conducting fluid due to radial stretching sheet with Newtonian heating in the presence of a transverse magnetic field and the thermal radiation has been analyzed. The governing equations are then solved numerically by using the fourth order Runge-Kutta method with shooting technique. The eff...

متن کامل

Numerical Simulation of Shock-Wave/Boundary/Layer Interactions in a Hypersonic Compression Corner Flow

Numerical results are presented for the shock-boundary layer interactions in a hypersonic flow over a sharp leading edge compression corner. In this study, a second- order Godunov type scheme based on solving a Generalized Riemann Problem (GRP) at each cell interface is used to solve thin shear layer approximation of laminar Navier-Stokes (N-S) equations. The calculated flow-field shows general...

متن کامل

Entropy Generation Analysis of EG – Al2O3 Nanofluid Flows through a Helical Pipe

fluids for various industrial applications because of their excellent thermal performance. This study analytically and experimentally examines the effects of nanoparticle dispersion on the entropy generation of EG–Al2O3 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015